△ABC,∠BAC=36 °,∠ABC=∠ACB=72 °.
令BC=a,AB=AC=b.
过B作∠ABC的角平分线BD,交AC于D.
因为等腰△ABC∽等腰△BCD,
所以BC/CD=AB/BC,
故CD=a^2/b,
由此得:AD=b-a^2/b=(b^2-a^2)/b.
因为BC=BD,故a=(b^2-a^2)/b.