一般解题步骤:
第一步:连接动点至圆心O(将系数不为1的线段的两个端点分别与圆心相连接),则连接OP、OD;
第二步:计算出所连接的这两条线段OP、OD长度;
第三步:计算这两条线段长度的比;
第四步:在OD上取点M,使得;
第五步:连接CM,与圆O交点即为点P。
阿氏圆是阿波罗尼斯圆的简称,已知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆。这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆。